Shenandoah Valley

Wastewater Treatment Plant Network

NITROGEN AND PHOSPHORUS: TREATMENT CONCEPTS

Anna Mehrotra, Ph.D. MehrotraAS@cdm.com

December 1, 2010

Part I: Nitrogen

1	IA ¹ H ³ Li	IIA ⁴ Be	Periodic Table							IVA ⁶ C	VA 7 N	VIA	VIIA ⁹ F	0 ² He ¹⁰ Ne				
3	¹¹ Na	12 Mg	IIIB	IVB	VB	VIB	VIIB		- VII -		IB	IIB	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	¹⁹ K	20 Ca	21 Sc	22 Ti	²³ V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	³¹ Ga	Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	46 Pd	47 Ag	⁴⁸ Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 Cs	56 Ba	⁵⁷ *La	72 Hf	⁷³ Ta	74 W	75 Re	⁷⁶ Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
7	87 Fr	⁸⁸ Ra	89 +Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	107 Ns	¹⁰⁸ Hs	¹⁰⁹ Mt	110 110	111 111	112 112	113 113					
* Lanthanide Series			58 Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	62 Sm	⁶³ Eu	Gd	65 Tb	66 Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	70 Yb	⁷¹ Lu		
+ Actinide Series		⁹⁰ Th	91 Pa	92 U	93 Np	⁹⁴ Pu	95 Am	96 Cm	97 Bk	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr			

Nitrogen Topics

- **Problems:** why remove?
- **Forms:** what is found in wastewater?
- **Conversions:** what reactions change one form to another?
- **Removal concepts:** how is N removed from wastewater?
- Process considerations: what design and operational factors influence removal?

Problems: Why Remove Nitrogen?

- Ecological consequences:
 - Greenhouse gases
 - Nitrogen may stimulate excess algae growth (eutrophication)
 - Oxidation of ammonia exerts high oxygen demand
 - Ammonia is toxic to aquatic organisms (< 1 mg/L total ammonia as N)

Problems: Ammonia Toxicity

Aquatic Life Ambient Water Quality Criteria for Ammonia

Problems: Why Remove Nitrogen?

- Human/health consequences:
 - Nitrate: need < 10 mg/L for potable water
 - Ammonia in drinking water supplies increases chlorine demand to achieve a free residual

Forms: What N is Found in Wastewater?

Forms: Basic Categories

- (Gas vs.) dissolved vs. particulate
- Organic vs. inorganic

Forms: N Compounds

	Compound	Dissolved or Particulate?	Organic vs. Inorganic?		
	Nitrite (NO ₂ ⁻)	Dissolved	Inorganic		
	Nitrate (NO ₃ -)		Inorganic		
Filtered TKN	Ammonia (NH ₃)	Dissolved	Inorganic		
Lefiltere d	Ammonium (NH ₄ +)	Dissolved	Inorganic		
(total) TKN	Dissolved organic nitrogen (DON)	Dissolved	Organic		
	Particulate organic nitrogen (PON)	Particulate	Organic		

Forms: TIN? TKN? TN???

- TIN = nitrate + nitrite = NOx
- TKN = ammonia + organic nitrogen
- TN = NOx + TKN
 - NOx + ammonia + SON + PON

Forms: Typical Concentrations in Raw Domestic Wastewater

(Metcalf & Eddy)

Forms: A Note on DON/SON and PON

- DON or SON:
 - Urea, amino acids
 - Refractory component (rDON) is not removed with biological treatment: some rDON in raw (~1-2% of raw TKN) and some rDON produced in process
- PON
 - Algae, organic particles
 - Biomass

Conversions: Overview

- Organic nitrogen converted to inorganic: hydrolysis
- Inorganic nitrogen used for growth
 - Incorporate into biomass: assimilation
 - Convert from ammonia to nitrate: nitrification
 - Convert from nitrate to nitrogen gas: denitrification

Removal Concepts: Basic Ideas

- What comes in must go out
 - Air
 - Water
 - Solids
- Transform to an acceptable or removable form
 - Air (N2 gas)
 - Water (effluent, e.g. nitrate)
 - Solid (biosolids)
- Remove solids
 - Sedimentation
 - Filtration
 - Membrane separation

- All biological processes
- Incorporation of ammonia (or nitrate) into biomass during growth: C₁₂H₈₇O₂₃N₁₂P
- Waste biomass ~ 10% N
- Removes TN

Removal Concepts:

Incorporation into Biomass (cont.)

- Effect of influent BOD and TKN
 - − Higher BOD → more WAS → higher percent N removed as
 WAS
 - Lower influent TKN:BOD ratio → higher percent N removed as WAS
- Effect of yield
 - − Higher yield → more WAS → higher percent N removed as WAS

Removal Concepts: Nitrification

- Conversion of ammonia to nitrate
- Does not remove TN
- Mitigates toxicity and oxygen demand of effluent ammonia
- Conditions for nitrification:
 - Ammonia-oxidizing and nitrite-oxidizing biomass ("nitrifiers"): need adequate SRT at given temperature
 - Oxygen: 4.6 mg O₂ / mg N nitrified
 - Adequate pH: 7.1 mg CaCO₃ alkalinity / mg N nitrified

Removal Concepts: Denitrification

- Conversion of nitrate to nitrogen gas
- N₂ goes to atmosphere (atmosphere is 78% N₂)
- Removes TN
- Conditions for denitrification:
 - Denitrifying bugs ("facultative heterotrophs" or methylotrophs)
 - Carbon!
 - No oxygen: nitrate used as electron acceptor

Removal Concepts:

Denitrification – Carbon Sources

- Wastewater (free!)
 - Domestic wastewater: C₁₀H₁₉O₃NP_{0.1}
- Bugs endogenous decay (slow...)
 - Bugs: C₁₂H₈₇O₂₃N₁₂P
- External source (\$\$\$)
 - Want carbon, don't want more N (or P)
 - Typical carbon courses:
 - Methanol: CH₃OH
 - Glycerol: C₃H₅(OH)₃

Removal Concepts: Denitrification - Anoxia

- Anoxic (no oxygen) conditions may be unintentional:
 - Middle of floc
 - Dead zones in aerobic basin

Removal Concepts: Denitrification - Benefits

- Recover alkalinity
 - Nitrification consumes alkalinity: -7.1 mg CaCO₃/mg N nitrified
 - Denitrification generates alkalinity: +3.6 mg CaCO₃/mg N denitrified
 - Save chemical \$
- Reduce oxygen supply required for oxidation of organics
 - Denitrification "credit" = 2.8 mg $O_2/mg NO_3$ reduced
 - Save energy \$
- To reap these benefits, denitrification must occur upstream of nitrification

Process Considerations: Conditions for Nitrification

- Ammonia-oxidizing and nitrite-oxidizing bacteria ("nitrifiers")
- Oxygen (electron acceptor)
- Alkalinity (pH sensitivity)
- No toxics
- Adequate temperature

Process Considerations: Nitrification & Oxygen

Process Considerations: Nitrification & Oxygen

Process Considerations: Nitrification and pH

- Optimal nitrification occurs at pH ~ 7.2
- Rates decline significantly below pH ~ 6.8
- Rates at pH ~ 6 are < 10% of maximum

Process Considerations: Nitrification & pH

CDM

Process Considerations: Nitrification & Temperature

Process Considerations: Nitrification – Washout SRT

- Washout of nitrifiers occurs when SRT is too short to allow microorganisms to accumulate
- Nitrifier growth rate is temperature-dependent
- Therefore, minimum SRT to avoid washout is also temperature-dependent

Process Considerations: Nitrification – Washout SRT

Tomporatura	Machaut SDT	Washout SRT Times					
remperature	Washout Shi	2.5 Safety Factor					
(ºC)	(days)	(days)					
9	4.7	11.8					
10	4.3	10.8					
11	3.9	9.9					
12	3.6	9.0					
13	3.3	8.2					
14	3.0	7.5					
15	2.8	6.9					
16	2.5	6.4					
17	2.3	5.8					
18	2.1	5.4					
19	2.0	4.9					
20	1.8	4.5					
21	1.7	4.2					
22	1.5	3.9					
23	1.4	3.6					
24	1.3	3.3					
25	1.2	3.0					

Process Considerations: Process Flow for Short SRT

Not nitrifying

Process Considerations: Process Flow for Long SRT

Nitrifying

21 mg/L ammonia N converted to nitrate 21 x 7.1 = 149 mg/L CaCO₃ alkalinity consumed 1 mg/L DON remains; TKN = 2 mg N/L Effluent $NH_{3} = 1$ Influent DON = 1TKN = 35 $NO_{3}^{-} = 21$ $NO_{3} = 0$ Flow = 1Flow = 1Aerobic Aerobic WAS RAS w/PON $NH_{3} = 1$ equivalent DON = 1to $NO_{3}^{-} = 21$ 12 mg/L N Flow = 0.5

Process Considerations: Nitrification and Toxics

- Sensitive to many compounds: metals, phenolic compounds, cyanates, amines, tannins etc.
- Unionized ammonia (NH₃) is also toxic
 - 100 mg N/L ammonia at pH 7 and T = 20°C inhibits ammonia oxidation
 - 20 mg N/L ammonia at pH 7 and T = 20°C inhibits nitrite oxidation
- Unionized nitrous acid (HNO₂)

Process Considerations: Conditions for Denitrification

Denitrifying bacteria ("facultative heterotrophs" or methanol utilizers)

Process Considerations: Denitrification – Anoxia with SNDN

Some Anoxic Time or Space

Some denitrification due to anoxic zones within aeration basin Estimate by monitoring effluent nitrate, example 19 mg/L effluent nitrate N 21-19 = 2 mg/L nitrate N removed by unintentional SNDN (Simultaneous Nitrification/DeNitrification)

Process Considerations: Denitrification – Anoxic Zones

Process Considerations: Denitrification – Nitrate

- Nitrification must occur first
- Nitrate typically delivered to anoxic zone via internal nitrified mixed liquor recycle and RAS

Process Considerations: Denitrification – LE Recycle

0.5 Q nitrate recycle: 1Q infl = 0.5Q denite/1.5Q total = 33% denite 33% of 19 mg/L N recycled for denite = 6 mg/L N denitrified 19 - 6 = 13 mg/L nitrate N remains in effl

Process Considerations: Denitrification – LE Recycle

0.5 Q nitrate recycle: 1Q infl = 0.5Q denite/1.5Q total = 33% denite 33% of 19 mg/L N recycled for denite = 6 mg/L N denitrified 19 - 6 = 13 mg/L nitrate N remains in effl

Process Considerations: Denitrification – Recycle Efficacy

Influent Flow, parts	Recycle Flow, parts	Total Anoxic Flow	Potential Denitrification = % Recycle
1	0.5	1.5	0.5/1.5 = 33%
1	1	2	1/2 = 50%
1	2	3	2/3 = 67%
1	3	4	3/4 = 75%
1	4	5	4/5 = 80%
1	5	6	5/6 = 83%
1	8	9	8/9 = 89%
1	10	11	10/11 = 91%
1	20	21	20/21 = 95%

Benefit of increasing recycle declines, typically use 350% - 450%

Process Considerations: Denitrification – Recycle Efficacy

Denitrification based on Recycle to initial anoxic zone (ex. MLE process) 100% Nitrate Recycled and Potentially Denitrified 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0% 50% 100% 150% 200% 250% 300% 350% 400% 450% 500% Combined Recycle Ratio (including RAS)

Process Considerations: Denitrification – Increase LE Recycle

4 Q nitrate recycle: 1Q infl = 4Q denite/5Q total = 80% denite 80% of 19 mg/L recycled for denite = 15 mg/L N denitrified 19 - 15 = 4 mg/L nitrate N remains

Process Considerations: Denitrification – Increase LE Recycle

4 Q nitrate recycle: 1Q infl = 4Q denite/5Q total = 80% denite 80% of 19 mg/L recycled for denite = 15 mg/L N denitrified 19 - 15 = 4 mg/L nitrate N remains

Process Considerations: Denitrification - MLE

Process Considerations: Denitrification – Carbon

Option 1: BOD from WW, recycle to deliver nitrate
ex. Modified Ludzak Ettinger Process (MLE)
Option 2: BOD from endogenous decay(may add carbon), nitrate present
ex. Four Stage Bardenpho process (Option 1 & 2) (endogenous C adds ammonia N and P)
Option 3: BOD from external carbon source, nitrate present
ex. Denite filter

No alkalinity recovery or decrease in oxygen demand for options 2 & 3

Process Considerations: Carbon Options

		NFPA Rating			Freezing		COD	COD:N	
Product	Strength	Health	Fire	Reactivity	Point, C	SG	Content, g/L	Required	
Methanol	100%	1	3	0	-97	0.79	1200	4.6	
Ethanol	100%	1	3	0	-114	0.79	1650	4.7	
Acetic Acid	100%	3	2	2	17	1.05	1100	3.6	
Corn Syrup	50% glucose	0	0	0	12	1.22	700	5.6	
MicroC-G	100%	0	0	0	-8	1.20	650	6.5	
Glycerin	80% (20% water)	1	1	0	18	1.19	1800	7.0	

Process Considerations: Effluent Nitrogen

- Effluent DON (eDON) = TKN not converted to ammonia in biological WW treatment process
- Some may be slowly biodegradable "recalcitrant" or "refractory" (rDON)
- Some produced in process
- WERF indicates > 60% of biological WWTPs in VA & MD have eDON ≥ 1 mg/L

Process Considerations: Range of N in ENR Effluents

COMPONENT	NITROGEN (mg/L as N)
Soluble	HIGHLOW
Organic	2.5 0.5
Ammonia	0.75 0.25
Nitrate + N	trite 2.0 1.0
Subtotal	5.25 1.75
Particulate Organic	0.50 0.25
Total	5.75 2.0

Process Considerations: Effluent TN Components for TN = 4

- Assume 4 mg/L TN limit
 - 1 mg N/L DON
 - 0.25 mg N/L PON
 - 0.25 mg N/L ammonia
 - Allows ~ 1.5 mg N/L NOx
- Nitrification and denitrification processes must be very effective